CONCERNING SUMMABLE SZLENK INDEX
نویسندگان
چکیده
منابع مشابه
Banach Spaces of Bounded Szlenk Index Ii
For every α < ω1 we establish the existence of a separable Banach space whose Szlenk index is ω and which is universal for all separable Banach spaces whose Szlenkindex does not exceed ω. In order to prove that result we provide an intrinsic characterization of which Banach spaces embed into a space admitting an FDD with upper estimates.
متن کاملThe Szlenk Index and Local `1-indices
We introduce two new local `1-indices of the same type as the Bourgain `1-index; the `+1 -index and the ` + 1 -weakly null index. We show that the ` + 1 -weakly null index of a Banach space X is the same as the Szlenk index of X, provided X does not contain `1. The ` + 1 -weakly null index has the same form as the Bourgain `1-index: if it is countable it must take values ω α for some α < ω1. Th...
متن کاملThe Szlenk Index and the Fixed Point Property under Renorming
Assume that X is a Banach space such that its Szlenk index Sz X is less than or equal to the first infinite ordinal ω. We prove that X can be renormed in such a way that X with the resultant norm satisfies R X < 2, where R · is the Garcı́a-Falset coefficient. This leads us to prove that if X is a Banach space which can be continuously embedded in a Banach space Y with Sz Y ≤ ω, then, X can be re...
متن کاملOn a Question of Brézis and Korevaar Concerning a Class of Square-Summable Sequences
We give an elementary proof of a statement due to Brézis and Nirenberg: ∑∞ k=−∞ k|ak| is an integer whenever {ak}k=−∞ is a sequence of complex numbers such that ∑∞ k=−∞ akān+k = { 0 if n 6= 0, 1 if n = 0, for all integers n and ∑∞ k=−∞ |k| |ak| <∞.
متن کاملSzlenk Indices and Uniform Homeomorphisms
We prove some rather precise renorming theorems for Banach spaces with Szlenk index ω0. We use these theorems to show the invariance of certain quantitative Szlenk-type indices under uniform homeomorphisms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2018
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089518000526